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Predicting the tensile strength and 
creep-rupture behaviour of pultruded 
glass-reinforced polymer rods 
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Hamburg-Harburg, EiBendorfer Stra3e 42, 2100 Hamburg 90, Germany 

In pursuit of an optimization of the mechanical properties of glass-reinforced polymer (GRP) 
rods, a fracture mechanism is submitted which enables the description of the short-term 
strength and the creep strength behaviour. By means of short-term tension or relaxation tests 
on fibres, as well as compound tests for the determination of the interlaminar shear strength, 
the characteristic values are determined, which allow a prediction of the industrially produced 
GRP rods. This makes it possible to determine suitable glass and matrix materials in advance 
to find optimal rod conditions. 

1. In t roduc t ion  
Developments are currently being made in various 
places to use unidirectionally reinforced glass-reinfor- 
ced polymer (GRP) rods as tension rods in civil engin- 
eering, both as prestressing elements in prestressed 
concrete constructions and as tension members in 
earth anchors [1]. In Fig. 1 we can see a pedestrian 
bridge produced with GRP tension elements. These 
elements are running freely under the bridge. Fig. 2 
shows a cross-section through a prestressing element 
grouted with resin mortar  used in a highway bridge in 
Dfisseldorf. This bridge is prestressed with elements 
consisting of 19 bars. GRP tension rods have been in 
use for some time now for bracing masts and securing 
rocks. 

In order to assess better the experimentally deter- 
mined behaviour, and in view of the further develop- 
ment of GRP rods by specific selection of the compon- 
ents comprising the composite material, we shall in- 
troduce a method which allows reliable predictions of 

Figure 1 Bottom view of a pedestrian bridge in Berlin Marienfelde. 
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the short-term and creep-strength behavlour on the 
basis of simple tests with the components using a 
model for the fracture mechanism. The results of 
Rosen [2] and Overbeck [3] are used as basic data. 

We will first introduce the fracture mechanism 
model of the unidirectional composite material for 
computing the mechanical short-term and creep- 
rupture behaviour. Experiments on glass-fibre bun- 
dles and tests for determining the interlaminar shear 
strength furnish the parameters required for predic- 
ting the mechanical short- and long-period properties 
of the rods. This procedure allows us to examine 
matrix and glass materials in advance, in order to 
produce rods with ideal properties. 

2. Fracture  mechan ism of  rods under  
s h o r t - t e r m  tensi le  tests 

Until now, estimations of the short-term rupture 
strength have used the failure models of Rosen [2] and 
Zweben [4]. In the "cumulative weakening model" of 
Rosen [2] from 1964, the strength of the fibre bundle is 
described using a Weibull distribution. This model 
also assumes that the fibres which tear before the GRP 
rod breaks, only fail to bear their share of the stress in 
the direct vicinity of the rupture. The lengths of fibre 
from a rupture point up to the point at which the 
fibres can take full load is described as the ineffective 
length. The GRP rod is regarded as a series of such 
layers consisting of glass-fibre segments in the form of 
chain links. The total load on the rod is assumed to be 
equally distributed over the cross-section of all un- 
broken fibres. This model leads to an excessively high 
estimation of rupture strength. The following text 
concentrates on further development of Rosen's [2] 
model, which is obviously realistic to a great extent. 
The description of the fracture mechanism finally 
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Figure 2 (a) Cross-section through a highway bridge 
in D/isseldorf, and (b) detail of an anchoradge 
element. 

allows both reliable prediction of the ultimate 
strength, and the creep strength behaviour. 

2.1. Effective layer th i ckness ,  /s 
In accordance with the ideas of Rosen [2] it can be 
assumed that the fibre failure which occurs in a cross- 
section of a compound rod when the load is increased, 
will lead to an effective fibre length, l, at the breakage 
points, which can be defined as "elementary length, Is", 
or to effective uncompounded fibre lengths or effective 
layer thicknesses of length, 1s. The effective layer thick- 
ness, l~, can be imagined in accordance with Fig. 3. ls 
corresponds to the force introduction length at the 
ends of the fibre or at the breakage point of a fibre. A 
bundle of fibres of this length, l~, thus has the mechan- 
ical properties of a GRP rod. If, realistically, we as- 
sume a constant compound tension distribution as a 
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mean value of the practically triangular force in- 
troduction at the end of the fibre, depending on the 
individual fibre tension glass, the fibre diameter, d, and 
the composite strength, ~ . . . .  is 

aEd 

4"Cma x 

In GRP rods made of E-glass and an unsaturated 
polyester (UP) matrix, Is is about 0.5 mm [31. To 
determine the layer thickness, the interlaminar shear 
strength must be known. It can be determined experi- 
mentally from manually produced composite mater- 
ial, e.g. by the ramp-stamp method (cf. Fig. 4). 

The disc-shaped cuttings of compound material 
samples press stamps through the core. Fig. 4 shows 
the results of the tests with an epoxy resin matrix and 
the roving of type El6, comparing our own and an 
industrial production as a function of disc thickness. 
The compound strength to be used in the calculation 
is derived from Equation 2 

interlaminar shear strength Fma x 
"Cma x = - -  (2) 

b bD l~ 

where D is the stamp diameter in the shear test, I the 
disc thickness of the sample, b = 1.2, a factor to ac- 
count for the structurally conditioned roughness of 
the sheared-off shell surface. Table I gives the values 
for three selected roving types E8, El0 and El6. 

2.2. Tensile strength of glass fibres and fibre 
bundles (rovings) 

We have ascertained that to predict the behaviour of 
rod materials, the behaviour of the glass fibres must be 
known. Not all glass fibres manufactured under 
identical conditions have the same ultimate strength. 
The reason for this is the statistical distribution of 
faults in the fibres. In an unsorted quantity of glass 
fibres the individual fibre strength can be described by 
the distribution equation published by Weibull [5]. 
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Figure 3 Effective layer thickness, l~. 
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Figure 4 (a) Stamp test set-up and (b) results of the experimentally 
determined interlaminar shear strength, ~, of roving type El6 in an 
epoxy resin matrix without accounting for the roughness of the shell 
surface. 

The "simple" two-parameter Weibull distribution 
(cumulative frequency curve) suffices here 

P([3) = 1 - exp - (3) 

! 

! 
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T A B L E  I Values for comparison 

Type of Resin Tex Fibre 
fibres (g k m -  1 ) diameter 

(/am) 

Compound 
strength 
(N mm -2) 

E8 UP 2400 24.4 36 
El0 EP 2360 17 5l 
E16 EP 2380 16 51.5 

where [3 is the variable (e.g. strength or elongation at 
rupture of the individual fibres), 13o is the Weibull 
parameter representing a kind of "mean value" and 
specifying the value of the variables (e.g. strength) 
which 63.2% of the fibres do not reach, and m is the 
Weibull exponent, which provides a measure of the 
spread of variables, 13. 

Figs 5.and 6 show the influence of the exponent m 
for a given [3o or So = [3o/E. 

Equation 3 applies for a constant fibre or sample 
length, l o. This length was selected at l = 300 mm for 
reasons concerning the technicalities of the test. In 
order to use fibre length, 1 o, to reach conclusions 
about other fibre lengths, we apply the "weakest link 
theory". Taking the failure and survival probability of 
a section into account (cf. [2, 6, 7]), for a roving of 
length l, where the strength distribution of the roving 
of length l o is known, we arrive at Equation 4. 

P(~) = l - exp - (4) 

In Equation 4, strength 13 has been replaced by elonga- 
tion at rupture, e, which is easily possible due to the 
linearity between elongation at rupture and tension in 
glass fibres. Fig. 7 shows the cumulative frequency 
distributions P(e) for various values of I. 

The 63.2% elongation value, %, changes with fibre 
length, l, as follows 

~ = ~o (5)  
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type of fibre. The roving samples are suitably an- 
chored at the ends, leaving a free length of about 
300 mm. This anchoring is used to clamp the sample 
in a tensile testing machine. In a short-term tensile test 
recording the force/elongation diagram, the percent- 
age of torn fibres is determined by Equation 6, at an 
elongation speed of 1% rain-~. 

P(~) = 1 F(8) (6) 
FT(8) 

where FT(a) is the force/elongation curve without the 
share of torn fibres (initial slope) and F(e) is the 
measured curve 

Figure 5 Cumula t ive  frequency of the share  of  torn fibres as a 
funct ion  of Weibul l  exponent ,  m: ( ) 3, ( . . -  ) 6.24, ( -  - - )  9. 
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Figure 6 Dis t r ibu t ion  funct ion for Fig. 3. m: 
6.24, ( - -  - )  9. 
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Figure 7 Frac tu re  behav iour  (cumulat ive  frequency curves) as a 
funct ion of roving length.  

Tensile tests are necessary to determine exPeri- 
mentally the distribution of strength and elongation at 
rupture for a given fibre type. As it is very difficult to 
test the individual fibres, the more practical method is 
used for determining strength distribution by testing 
whole bundles of fibres, which we will call rovings. A 
roving consists of 2000-4000 fibres, depending on the 

FT(S) = Eg,,ssa'AR (7) 

The cumulative frequency distribution, P(s), we are 
looking for must now correspond to the relative sum 
in the elongation-controlled tensile test (Equation 4). 
Equations 6, 7 and 4 provide the required equation for 
the curve in the force/elongation diagram (Fig. 8) 

l E m 

To determine the Weibull parameter on the basis of 
tensile tests, it is necessary to transform Equation 8 
into a graph with the axes In a and In ln[1/(1 - P)], 
because the distribution equation appears as a straight 
line here. It is possible to estimate this straight line 
with "linear regression". The slope of the line deter- 
mines the parameter m, and the crossing point with 
the In e axis determines %. Fig. 9 shows the part of 
cracked fibres depending on the elongation, a, and 
Fig. 10 explains the above mentioned transformation 
and the determination of the Weibull parameter. 

To determine the ultimate strength of the GRP rods 
it is necessary to know the maximum load of a roving. 
This we obtain by deriving Equation 8 and calculating 
the zero point of the derived function. With this pro- 
cedure we obtain the ultimate elongation. Equation 9 
shows the result of this elongation, au, with respect to 
the influence of the length 

% = 80 (9) 
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Figure 8 Force /e longa t ion  d iagram of a rovin'g test. 
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Figure 9 Part of the cracked fibres (E-glass, Series El0): (O) mean 
measured value, ( ) Weibull cumulative frequency curve. 
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Figure 10 Transformation into Weibull paper: (o) mean measured 
value, ( ) straight line from regression analysis. 

The percentage of fibres torn at the moment of 
fracture is derived by inserting Equation 9 into 
Equation 4 

P(%) = 1 -  e x p ( - 1 )  (10) 

We can see from this that the Weibull exponent, m, 
determines the percentage of torn fibres at failure. The 
smaller the exponent m, the larger the share of torn 
fibres at breakage. The sample length has no influence 
on this percentage. For the values of m used as ex- 
amples in Figs 5 and 6, Equation 10 produces the fibre 
percentages belonging to the maximum load of the 
corresponding rovings at 28.4%, 14.8% and 10.5%. 

2.3. Strength of a GRP rod from one roving 
The elongation, %, associated with the maximum 
accepted tensile force of a nacked roving, and the 
associated percentage of torn fibres, are provided by 
Equations 9 and 10. After impregnating with resin and 
hardening, this type of roving acquires rod properties. 
The associated force/elongation line, F(e), is then 
given by Equation 8, whereby it should be noted that 
the effective layer thickness, l,, to be inserted for l is 

itself dependent on the rod force or elongation 

1 = ls 

= a ( Eglass d ~ 
\4  max/ 

= J<s  (11) 

F(e) = AREg~assCexp lo ~ '  (t2) 

The maximum accepted force of the roving rod is 
produced by Equation 12 after inserting % from Equa- 
tion 9 and using Equation 11, and is 

( lo ~ 1/('+1) 
Fma x = EglassA Rc~/(re+l)  

\ K s /  

X e -1/m (13) 

Impregnating the fibres with a resin matrix in- 
creases the elongation at rupture and the strength of 
the roving. For example, the mean fracture load of the 
nacked roving El0 (300 mm sample length) is 1025 N. 
The characteristic Weibull parameters of the roving 
are c o = 2.207%, m = 6.24. After impregnating with 
resin (rm, x = 51 N mm-2)  we obtain from Equation 13 
a calculated roving rod fracture load of 2.33 kN; the 
average actually measured was 2.23 kN. 

The discrepancy between calculation and experi- 
ment is only 4%. The effect of the resin matrix on the 
force/elongation line of a roving is shown in Fig. ! 1. 

2.4. Prediction of the mechanical short-term 
properties of a GRP rod consisting of 
several rovings 

Unidirectionally reinforced GRP rods usually consist 
of a number of rovings; the 7.5 mm thick Polystal rods 
(Bayer AG), for example, consist of z = 32 rovings. If 
we now test a roving type using, say, 10 roving sam- 
ples with 300 mm free length, we obtain spreading 
tension/elongation lines with the basic curve corres- 
ponding to Fig. 11 or Equation 8. By grouping all 
rovings to form an "overall roving" and dividing by 
the number of rovings, we obtain what is called the 
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Figure ll Comparison of the force/elongation lines of ( - - )  a 
nacked and ( - - - - )  an embedded roving El0. 
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"mean value roving", which would seem suitable for 
predicting the behaviour of the rods produced from it. 
However, if we calculate the rod ultimate force, assum- 
ing that it is produced by z mean value rovings, we will 
usually arrive at ultimate loads which are far too high. 
This, in turn, is illustrated by roving type El0: for the 
mean value roving of fibre type El0, % = 2.207%, 
m = 6.24. Also Zma x = 51 N mm-2.  From Equation 13 
we obtain, at z = 32, the rod fracture force of 91.6 kN. 
The associated calculated elongation at rupture, %, is 
calculated from Equation 9 if 

I = ls(~.) = K'~/("+I) I~/(m+l) g~/("+~)  (14) 

is used there. It is 4.84%. By contrast, the measured 
ultimate fracture force is only 70.4 kN and the associ- 
ated elongation 3.3%. Fig. 12 shows a typical force/ 
elongation line for this type of rod. 

A closer examination of the fracture behaviour and 
the measured fracture characteristics now leads us to 
the conclusion that a rod made from a larger number, 
z, of rovings will fail when the weakest rovings fails, 
delaminating the entire rod. Fig. 13 shows part of a 
cross-section through an industrially produced GRP 
rod. Although the rods are produced according to the 
pultrusion method, the individual rovings are slightly 
visible. 

The decisive roving is thus produced by statistical 
evaluation of the tensile tests on each roving type, and 
is described here as a "decisive roving" or "fractile 
roving". The associated Weibull parameters are %,t 
and mr. Fig. 14 shows the force/elongation lines deter- 
mined in the experiment for the mean value roving 
and the fractile roving of fibre type El0  (lo = 300 mm), 
with the F(~) lines, referred to Is, which were calculated 
from those rovings and which are decisive in the rod. 
The actual ultimate force of a GRP rod in the short- 
term tensile test is thus obtained from 

Fmax(rod) ----- r  . . . .  (15) 

if the Weibull parameters %f and m r of the fractile 
roving are used in Fma x from Equation 13. The factor c 
(as a rule c ~ 0.96) is an experimentally obtained 
factor and accounts to the influence of the edge fibres 
which are not fully encased in resin. The associated 
elongation at failure is at least %r; it is obtained from 
Equation 12 for F(Q = Fmax(rod) by resolving g and 
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Figure 12 Force/elongation diagram ofa  GRP rod = 7.5 mm, glass 
content ~ 80% by weight. 
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Figure 13 Cross-section through an industrially produced GRP 
bar. 
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Figure 14 Force/elongation lines of nacked and embedded rovings 
of fibre type El0. ( - - )  Mean roving l~ (bar), ( - - . - - )  fractile roving, 
l, (bar), El0. ( - - )  mean roving l =  300mm, ( . . .  ) fractile 
roving, l = 300 ram. 

inserting the Weibull parameters of the mean value 
roving. 

Table II shows the rod fracture loads for fibre types 
E8, El0  and El6  predicted using the method described 
above, in comparison with the measured ultimate 
loads of the rod. We notice that the discrepancies 
between prediction and experiment are less than 5%. 

2.5. Influence of compound strength, 1~max, on 
rod fracture loads 

In assessing the mechanical properties of a compound 
rod consisting of z rovings it is of interest to know the 
influence of the quality of the compound between 
fibres and resin, as well as any change in the ele- 
mentary length, ls. Fig. 15 below shows the change in 
length, l~m , and in fracture force, Fsr, of the rod 
material when using fibre material El0. By varying the 
Weibull parameter, m, we can clearly see the influence 
of the glass-fibre strength spread on the compound 
properties (~max) and on the rod strength. The larger is 



TAB L E I I Determined Weibull parameters and the calculated time-dependent strength values compared with the test results 

Type of Resin Weibull parameter 
fibres 

Rods to be composed of 32 rovings 

Mean roving Fractile roving Predicted Measured values 

8 0 m q mf Is {gBr ) FBr 8Br F.~ 8B, 
(%0) (%0 (kN) (%0) (kN) (%0) 

E8 UP 17.7 4.42 17.0 6.2 0.4 66.8 31 68.7 31 
El0 EP 22.07 6.24 19.0 7.5 0.21 71.5 33 70,4 32.8 
El6 EP 22.3 9.46 21.5 9.0 0.18 75.3 36.5 78.2 36.2 

~ 1 0 - -  
E 
E 

&8" 

s  t ~" 
~n / /  .. .................. l:Z -' 

~ 4 -  / ."  

"E2- oJ 

./2_ 
o 10 20 30 40 5'0 

r 
4oo~ 

-80 -~ 
4 

-60 u. 

-40 ~ ,o 

E.,-- 
20~ ,_  

~ o  

0 
60 

Compound sfrengfh, Tmax (N mlff 2) 

Figure 15 Dependence of rod fracture force and elementary length, 
&, on the compound strength for various Weibull parameters, m: 
( - - . - - ) 3 , ( - - - ) 7 . 5 , (  . - .  )9. 
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Figure 16 Long-period behaviour of individual fibres under normal 
climatic conditions (spread range as given by Weibull statistics). 

parameter m, the greater is the influence of'~max on rod 
strength. 

3. L o n g - p e r i o d  b e h a v i o u r  
After the description of the short-term behaviour of 
the GR P  rod, we shall examine the creep-rupture 
behaviour in more detail. The elaborations indicate 
the extent to which the creep-rupture behaviour of 
the rods depends on the mechanical properties of the 
components and on the compounding between the 
fibres and the resin, and illustrate the measures with 
which this behaviour can be optimized. 

3.1. L o n g - p e r i o d  behav iou r  of glass f ibres and 
rov ings  

Predicting the rod behaviour under constant load 
requires that we know the creep rupture behaviour of 
the glass fibres. In the literature we find reports of 
creep-rupture tests on individual fibres, in particular 
optical fibres, and on solid glass (cf. [8-12]). The 
results of these tests show that the creep-rupture 
behaviour of the glass samples or fibre samples of a 
parent population can be characterized by a straight 
line on double logarithmic scale in accordance with 
Fig. 16. For  glass fibres, n is by order of magnitude 
equal to 40 (cf. [3, 12, 13]). The long-period behaviour 
of individual fibres is therefore described by the 
relation 

1 
t(~) - {16) 

During the period leading up to the failure, the deci- 
sive faults or cracks in the individual fibres grow at a 
defined rate of crack propagation until they reach the 
critical size. The rate of crack propagation at constant 
fibre tension is 

da 
- A t k ] ( t )  ( 17 )  

dn 

A t is a material coefficient dependent on the initial 
crack length, a t, and the ambient conditions, k t is the 
tension intensity in accordance with the Kc- concept of 
fracture mechanics, and n is the exponent in accord- 
ance with Fig. 16 or Equation 17. The endurance of 
the i fibres of a collective (which varies in spite of 
constant tension) or the endurance spread of the 
fibres, is caused by different sizes of faults or initial 
crack lengths, a~, when the stress commences. The 
influence of the initial crack length or strength spread 
can be accounted for in the material coefficient, B~. 
According to Franke [14], we obtain the relation of 
the endurance values between fibres of different 
strengths from the following 

B i =  ( a i ~  ("-2)/2 (18) 

Bt \ a l  / 

Furthermore, according to the K c concept of fracture 
mechanics, the following relation exists between the 
fault sizes, ai, of the fibres and the fibre strengths 

( a--i~l/213-L = 1 (19) 
a l  / 91 

From Equations 18 and 19 we obtain the connec- 
tion between the fibre strengths and the material 
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coefficients, B1, from Equation 16 at 

Bi 
B, 

The endurance of samples or fibres of the same kind 
but of different strengths, under the same tensile stress, 
(y = constant, thus relates as 

,, _ 

tl k[~l/ ( 21 )  

This relationship is illustrated in Fig. 17. 
If a sample collective or fibre bundle of length 1 has 

the following strength distribution (cumulative fre- 
quency curve), e.g. according to Weibull with the 
Weibull parameters eo and m (cf. Equation 3) 

P(~,) = 1 - exp - \Po,]  ] 

creep-rupture tests on the individual fibres of the 
roving will produce the distribution of the associated 
endurance values, ti (cumulative frequency curve) on 
the tension level ~ is constant, using Equation 21, 
from the following relation 

, ( , , )  : , - o x p [ -  Vo/("Y1, 
with 

m 
k - (23b) 

n - - 2  

as the exponent for the spread of the endurance values. 
The reference value of the endurance (63.2% value) 
changes as a function of the effective fibre length, l, in 
comparison with the reference length, lo, as 

to, t = t o a  o (24) 

In many applications the question of spread ranges of 
the endurance of material samples or stressed com- 
ponents at a given load level is relevant. We can 
deduce from the relationships above that there is a 
direct connection between the spread of endurance 
values tl referred to the characteristic to and the spread 
of the corresponding short-term strength values [3i and 
[3 o (see Equation 25) 

t L" m 
Time to fQiture, tg 

Figure 17 Relationship of spread from the short-term tests and 
creep-rupture tests of glass fibres. 13,. is the mean value of ultimate 
strength, tm is the mean value of time to failure. 
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t, \ f3o/  t~ (25) 

If, for example, the 5% fractile of the fibre strengths 
determines the mean strength value to 90%, a 5% 
fractile value of the endurance values can be expected, 
which is 9 0 %  n-2  of the mean value. At a value of 
n = 38, realistic for glass fibres, we thus obtain the 5% 
fractile of the endurance values at approximately 2% 
of the mean value. The practical determination of k or 
n of a fibre type is done by means of tests at constant 
elongation (relaxation tests) on the whole roving, with 
the result that in spite of the time-dependent tearing of 
individual fibres, the tension of the fibres remains 
constant. In this type of test with initial load Fo, we 
obtain a curve as shown in Fig. 18. Fo is selected using 
a c~-a line in such a way that none, or a negligibly 
small number, of the fibres tear under the initial load. 
The curve is produced by the following relation 

F(0 
P(O = 1 - -  

Fo 

= 1 - exp - (26) 

or, in view of the practical evaluation at endurance 
values < t o 

[(';1 f ( 0  _ exp - (27) 
F o  ) o  " 

The value k being determined is produced by this as a 
slope of the logarithmic function (Equation 26) 

L Fo J] 
= k(lgt,  - lgt2) (28) 

n is obtained with k from Equation 23b after inserting 
the Weibull parameter m from the familiar strength 
distribution. Fig. 19 shows the relaxation curves meas- 
ured on the rovings of the El0  series. The derived 
values k and n are taken from Table II. 

3.2. C reep-s t reng th  behav iour  of GRP rods 
3.2.1. Deformation under constant load 
The deformation of pultruded glass fibre rods under 
constant stress was discussed previously [15]. It was 
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Figure 18 Long-period behavi0ur of a roving at constant elonga- 
tion (F o = initial load). 
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Figure 19 Relaxation curves of the El0 roving. 

shown that the glass fibres do not manifest any creep 
at normal temperatures. Only the relatively slight 
share of the load introduced at the onset of stressing 
into the resin matrix in accordance with its propor- 
tional rigidity is transferred in the course of time from 
the resin to the glass component as a result of relaxa- 
tion, so that a slight increase in elongation is regis- 
tered, which fades fast but can still be described as 
creeping. However, this increase is only about 3 % of 
the initial elongation and it can therefore be neglected 
as a rule. 

3.2.2. Endurance values at constant load 
The creep-strength behaviour of the compound rods 
can be predicted on the basis of the creep-strength 
behaviour of the rovings if the effective layer length, Is 
is introduced as the decisive fibre length, l~ corres- 
ponds to the force introduction length at the ends of 
fibres or at a fibre breakage point. As changes in 
tension and elongation amounting to only about 3 % 
of the initial value occur up to shortly before the 
maximum endurance in a creep-rupture test under 
constant load, a constant elongation state can be 
assumed for the following considerations. Compared 
with the fracture state in the short-term test, the GRP 
rod has a shorter decisive fibre length, 1~, under work- 
ing tension 

Is(t, cy) = l,(ear) ~ [1 + cO(t)] (29) 
O'Br 

where r~ is the rod tension as long-period stress, CYBr 
the ultimate strength of the rod, 1~(%~) = l~ at breakage 
in the short-term test, and cO(t) is the coefficient with 
which a time-dependent increase of 19 can be ac- 
counted for. 

The endurance of the rod now corresponds to that 
of a corresponding roving with the short effective 
length, l,(t, cy), as in Equation 29. It is obtained by the 
following means. The endurance of a roving of length 
lo at constant elongation or tension of the individual 
fibres until endurance, to, of the fibres is reached 
(failure of 63.2%) is, according to Equation 16 

l 
to,,o(O,) - (30) 

B I ~ '  

Referred to this endurance, a roving of the (shorter) 
length l~ has the following endurance (cf. Equation 22) 

[ lo 11/k (31) 
tO,,o('=) = to,,o " 

After introducing Equation 3l into Equation 30 and 
accounting for Equation 29, we obtain the expression 
for the required endurance of the rods (as the endur- 
ance of a short roving of length l~(t, r~)) at 

t0(O" ) = C 1 B1 cy( .+ l /k  ) (32) 

with 

c, 1 + m(t)J 

A comparison with Equation 16 shows that this is a 
straight line on double logarithmic scale with the slope 

1 1 
- ( 3 3 )  

n, n + (l/k) 

as long as no time-dependent change of l~ takes place, 
i.e. c0(t) -- 0. This means that the endurance straight 
line of the rods is flatter than that of the roving 
component. Fig. 20 shows a comparison of the slopes 
of the roving and the rod. 

The characteristics determined on the basis of or 
derived from the comparatively short creep-rupture 
tests on bare rovings, and a comparison of the data 
which have, in the meantime, been measured from 
compound rods, are shown in Table II. Fig. 21 shows 
the long-period straight line measured on the GRP 
rod of series El0 or calculated from the test values by 
linear regression. 

An assessment of the above results indicates that 
surprisingly good predictions can be made about the 
creep-rupture behaviour of the unidirectionally re- 
inforced GRP material with the help of the method 
described above. The test results show that under the 
given conditions (normal climatic conditions) no sig- 
nificant changes in the compound properties or the 
lengths I s could be registered. 

The creep-rupture tests were conducted on spec- 
ially constructed test stands. Spring packages were 
used to retain constant force. In order to compensate 
the (albeit slight) force reduction caused by the creep- 
ing of the sample, the force was checked in logarithmic 
time intervals and corrected as needed. 
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Figure 20 Comparison of creep-rupture straight line of a roving 
and the rod made from it (series 10). 
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Figure 21 Results of the ([~) creep-rupture tests on series El0 
material and o f (o )  two short-term tensile tests applied at t = 0.1 h. 

If use of the results of the short-term tests conducted 
at a constant rate of load increase is to be included for 
setting up the long-period function, this can be done 
as follows. The short-term tensile test results are ap- 
plied by using the accumulation rule for creep rupture 
stress (cf. [1]), as shown in Equation 34 

At~ _ 
i=1 Tb(ch) 1 breakage conditions (34) 

Tb(Ch) is the time which leads to failure for a certain 
constant tension, Ati is the time over which this ten- 
sion is applied. The endurance of the GRP  rods for a 
certain tension is calculated (cf. Equation 30) as 
follows 

Tb = (35) 

where D 1 is the material coefficient (1/(y~;). o o is the 
tension for an endurance of 1 h, i.e. lg to = 0. In ac- 
cordance with the damage accumulation rule, when 
converting from one level 1 to another 2, the following 
consequently also applies 

t l  
( 61 

/ k 

t 2 \ O " 1 /  

By varying e~ 2 with progressing time it is possible to 
sum over all according time intervals, A h, After separ- 
ating tl we obtain Equation 37. 

(3 1 Tb = i \ 1 3 1 J  

Choosing a linear increase of the force 

cy(t) = at 

and transforming the sum into an integral we obtain 
Equation 38 

tl - ~,~ . ~(t)"~dt 

- ~1~ a't"~dt (38) 

with the solution 

a"" t~ "+l 
tl = (39) 

~]s  ns + 1 

If the short-term test is to be applied at an equivalent 
creep rupture value of t = 0,1 h, Equation 39 can be 

4 9 0 8  

inserted into Equation 36 and for t 2 =- 0.1. We then 
obtain the equivalent creep-rupture load or tension 
calculated from the short-term strength at 

1 
t~2(t = 0 ,1h)  - 

(0, la) 1/"~ 

x( 1 
\.-77-7) ~ (40) 

4. Conclusion 
The present work describes the computation of the 
fracture mechanism of GRP rods for predicting the 
mechanical properties in short-term tests and for pre- 
dicting long-period behaviour. Using the results of 
experimental tests, it is shown that on the basis of 
Weibull statistics in evaluating the strength of the 
glass fibres or rovings and the compound strength of 
the glass fibre/resin matrix, a reliable prediction of the 
tension and elongation behaviour in short-term tests 
can be made. The long-period with respect to the 
creep-rupture behaviour of GRP rods, i.e. the relation 
between endurance and stress level, is represented as a 
straight line on a double algorithmic scale and can 
also be predicted with the help of the model described. 
Fig. 21 shows the long-period test results and, as a 
significant example, those of two short-term tests run 
with different rise rates, for the material of series El0. 
This technique is useful if only a few creep-rupture test 
results are available. 
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